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Abstract. We extend a recent construction of isotopic spin-coherent states to unitary groups. 
Expectation values in such a quasi-coherent state can be obtained from a generating 
functional which is given explicitly for the fundamental and the adjoint representations 
of the unitary groups SU( N )  and U( N ) .  The close connection between the corresponding 
generating functional and the external field problem in QCD is pointed out. Free quantum 
fields in such a condensed, colour singlet, coherent state are formally related to two- 
dimensional lattice gauge theories with, in general, a mixed action. In the large-N limit, 
we exhibit a phase transition for a free quantum field in a singlet quasi-coherent state. A 
path integral representation of the transition amplitude in terms of quasi-coherent states 
is also given. The corresponding effective action describes dynamics on a complex Kahler 
manifold. 

1. Introduction 

The concept of coherent states plays an important role in various branches of physics 
(we refer to Klauder and Sudarshan (1968), Glauber (1963, 1964) and Klauder and 
Skagerstam (1984) for a general introduction to coherent states). Coherent state 
techniques can for example be used in order to justify the study of classical equations 
of motion in quantum mechanics or in quantum field theory, i.e. semi-classical methods 
(Klauder 1977), and in this context we also mention a recent application to Yang-Mills 
instanton gauge field configuration considerations (Duff and Isham 1980). 

Due to their very interesting properties various attempts have been made to gen- 
eralise the concept of coherent states. One such very successful generalisation to 
arbitrary Lie groups is due to Perelemov (1972) (see also Gilmore 1972), who construc- 
ted what is referred to in the literature as generalised coherent states (see Perelemov 
(1977) for a review and applications of these states). This construction extends other 
work on SU(2) spin-coherent states (Radcliffe 1971, Arechi er a1 1972, Klauder 1963, 
1979, 1982, 1983). 

Recently an alternative generalisation has been put forward (Skagerstam 1978, 
1979,1980, Eriksson and Skagerstam 1979,1981, Mukunda eta1 1981). The correspond- 
ing over-complete set of quasi-coherent states transforms according to a given irreduc- 
ible representation of a compact Lie group under consideration. The construction of 
these quasi-coherent states is based on the considerations by Bhaumik et a1 ( 1976), 
where it was noted that in the case when an Abelian conserved charge is present a 
complete set of ‘coherent states’, in which the charge is diagonal, can easily be 
constructed. In the papers by Skagerstam (1979, 1980) their construction was extended 
to the field-theoretical situation (for a related discussion see Horn and Silver 1971). 

0305-4470/85/010001+ 13$02.25 0 1985 The Institute of Physics 1 



2 B-S  Skagerstam 

These U( 1)-charged coherent states have recently been applied to a study of the vacuum 
state in some field-theoretical models by Ni and Wang (1983). An extension of the 
work by Bhaumik et a1 (1976) to the case of the non-Abelian group SU(2)/Z(2) was 
given by Skagerstam (1978), Eriksson and Skagerstam (1979, 1981), which recently 
was also extended to the field-theoretical situation by Mukunda et a1 (1981). 

In  the present paper we will extend the analysis of Skagerstam (1978), Eriksson 
and Skagerstam (1979, 1981) and Mukunda et a1 (1981) to higher-dimensional compact 
Lie groups. We will specialise in the unitary groups U (  N )  and SU( N ) ,  but, as will 
be clear from our presentation below, the present work can easily be extended to any 
compact Lie group. We will mainly consider one degree of freedom, as in Skagerstam 
(1978), Eriksson and Skagerstam (1979, 1981), although most of our results can be 
extended directly to an arbitrary number of degrees of freedom and will briefly be 
discussed in the text. Concerning applications of the quasi-coherent states of the form 
we are considering in the present paper we mention a recent study of the thermo- 
dynamics of the non-Abelian, ideal and colourless quark-gluon gas (Skagerstam 1983, 
1984). Elsewhere we will return to applications in other areas of physics. 

The paper is organised as follows: in § 2 we construct the quasi-coherent states for 
real representations. We give some specific results for the adjoint representation, which 
are relevant for the study of condensed gauge fields (Mukunda er a1 1981). In Q 3 we 
consider complex representations. Some field-theoretical considerations are presented 
in 8 4, where we also include a study of the large-N limit of the colour singlet 
quasi-coherent states. I t  is shown that a free quantum field, in a condensed colour 
singlet state, may exhibit a first-order phase transition if the one-particle state transforms 
according to the adjoint representation. The origin of this phase transition has a 
counterpart in the study of some two-dimensional lattice gauge theories (Chen and 
Zheng 1982, Makeenko and Polikarpov 1982, Samuel 1982, Ogilvie and Horowitz 1983, 
Jurkiewicz and Zalewski 1983a, b). In 9 5 we give some general conclusions of our 
work including a discussion of the transition amplitude in terms of a quasi-coherent 
state representation. The effective Lagrangian in the corresponding path integral 
representation of the transition amplitude describes classical dynamics on a complex 
Kahler phase space manifold, where the Kahler metric is determined by the generating 
functional. 

2. Quasi-coherent states with real representations 

We follow the construction given by Mukunda et a1 (1981) by making use of conven- 
tional coherent states. Let D be the dimension of the real representation, M ( g ) ,  of 
the group G under consideration and consider D creation (annihilation) operators 
ui ,a (ak ,u ) ,  a = I , .  . . , D, in Fock space. We introduce in the usual manner the unitary 
operator 

(2.1) 
where the D-dimensional vector f describes a one-particle state which transforms 
according to the M ( g )  representation and 

U ( f )  = exp[(a',f) - ("P, all, 

(a ' , f )  = a;,ufk,a (2.2) 
defines a scalar product. The index k can be thought of as a labelling of, for example, 
the momentum degrees of freedom of the one-particle state. The conventional coherent 
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state i f )  is then given by 

If) = U(f)IO>, (2.3) 

ak,mlf) = f k , m  If). (2.4) 

where (0) is the Fock-space vacuum and, furthermore, 

For later purposes we also recall the expression for the overlap between two coherent 
states (2.3) i.e. 

(fig) = exp[(f", g )  - ( f* t f ) /2  - (g*, g)/21. (2.5) 

In the following we will suppress the index k but, when appropriate, it is straightforward 
to make it explicit. 

In order to extract from the coherent state (2.3) the component which transforms 
according to a given representation D$' of the group G, we construct the following 
quasi-coherent state: 

lDh",';f) = Mh",'(f) d g  Dh",'(g)lM(g)f) (2.6) 

where, of course, only those representations can occur which can be generated by the 
representation M(g) .  In (2.6) dg  stands for the invariant Haar-measure on the group 
(see, for example, Talman 1968) and Mh",'( f)  is a normalisation factor which, in 
general, depends on the representation chosen. {n} stands for the sequence of integers, 
n o s  n, S .  . . S nN-,,  which characterise the irreducible representation Dh",' (see, for 
example, Weyl 1949). By its very construction it is now obvious that the state (2.6) 
transforms irreducibly under group actions which, of course, can be verified by an 
explicit calculation. The normalisation factor M S ' ( f )  can be evaluated by making 
use of (2.5) i.e. 

G 

(f; D%'l DY ; f) 

= iMz'(f)l' exp[-(f*,f)l  j d g  dh Dz}(g)*Dtz'(h) 
c; 

xexp[(f*, M ( g - ' h ) f ) l .  (2.7) 

The invariance of the group measure and the orthogonality relation 
r 

where d, , ,  is the dimension of the representation DL' ,  then leads to the following 
definition of normalised quasi-coherent states: 

1Dbnb':f) = ex~ll"*,f)/21Mb"'(f)-''* dg  Dh",'(g)lM(g)). (2.9) i, 
Here Mb"'(f)= M & ' ( f * , f ) / d { , } ,  where Mh", ' (h*, f )  is given by 

r 

(2.10) 

M p ' ( f )  is a real quantity as expected. 
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The overlap between two quasi-coherent states (2.9) can be evaluated in an 
analogous manner with the following result 

( h  ; DZ'lD(C7) ;f) = 6 ( {  m},  { n})6ac8bdMb",'( h*, f )[Mb"'(  h)Mb"'")]-'''. (2.1 1 )  

Expectation values of normal ordered operators, invariant under group transforma- 
tions, can easily be obtained from the generating functional (2.10). Let us illustrate 
the procedure by considering the number operator 

N = (2.12) 

Proceeding as in the calculation presented above, we find that 

(f; Db",' l"kf) = (Mb"'(f)d{"))-I s, d g  Db",'(g)(f*, M ( g ) f )  exp[(f", M ( g ) f ) l .  

(2.13) 
The equations (2.10) and (2.13) can then be combined to give 

(f; Dkrb'lNlDkrb';f) = a/aA ln[Mb",'(f*, A f ) ] l ~ = i .  (2.14) 

The corresponding expression for the dispersion of the number operator, [(A N)(n) ,a ,hJ]2 ,  
has the same formal structure as in the case of quasi-coherent SU(2) states discussed 
in the literature (Mukunda er al 1981) and reads 

[(A N ) ( n ) , a , b J 1 2  = (a2/aA2+ a/aA ln[Mb",'(f*, A f ) ] 1 ~  = I .  (2.15) 

By making use of the completeness relation 

(2.16) 

we can easily verify (compare the discussion by Skagerstam (1979, 1980), Mukunda 
et al ( 1982)) the following completeness relation for the quasi-coherent states (2.9) 

1 = c J d f  exp[- (~*,~)IM~"'(~)ID~", ' ;s)(Dz';~I.  (2.17) 

As is the case for the SU(2) quasi-coherent states constructed in Mukunda er a1 
(198 l ) ,  a further representation reduced set of quasi-coherent states can be constructed 
in a straightforward manner which are labelled only by the Casimir invariants of the 
group G 

(nJ,a,b 

I{n I ; f )  e x ~ [ ( f " ) I / M ' " ' ( f ) } ' ' ~  [ dgX(n)(g)(M(g)f) ,  (2.18) 
G 

where M { " ' ( f )  = M ' " ' ( f * , f )  and 

The overlap between two quasi-coherent states (2.18) can easily be computed to be 

U; {nII{mI; h )  = a({nI,  { m } ) M ' " ' ( f " ,  h ) / [ ~ ' " ' ~ f ) ~ ' " ' ( h ) ~ ' ' ~  (2.20) 
and the following completeness relation holds 

r 
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Expectation values of G-invariant operators can then be derived in terms of the 
generating functional (2.19) in a way similar to the one used in the discussion of the 
quasi-coherent states (2.9). 

We realise that in any practical application of the quasi-coherent states (2.9) (some 
applications have already been indicated by Mukunda et a1 1981) the analytical 
structure of the generating functional (2.10) is essential. It turns out however to be a 
rather difficult problem in itself to evaluate the integral over the group. For reasons 
of simplicity and because of its practical importance, we now consider the adjoint 
representation of the group SU(N) (or U ( N ) )  in which case (2.10) takes the following 
form 

r 

(2.22) 

where 

f = f a A a ,  h = h,A,, (2.23) 

and where A,, normalised in such a way that Tr(A,Ap) = 2S,,, generates the fundamental 
representation of the S U ( N )  groups (or U(N)) .  Integrals of the form (2.22) have 
actually been considered in the literature in the context of the planar approximation 
(Itzykson and Zuber 1980) and in the study of chiral U( N )  0 U( N )  models (Bars er 
a1 1983, Brihaye and Rossi 1983). In terms of a character expansion, (2.22) takes the 
form ( n o  = 0 for G = SU( N ) )  

M ( h * , f  1 = c '+(n,/I"!Id~")X{n)(ht)Xi")(f ) 9  (2.24) 

where U{,,) is the number of times the representation D'"'( U )  occurs in the tensor 
product @'"'U and l n l =  Z?- lni .  If we consider diagonal elements only, (2.24) can be 
written in a more explicit form. In this case the matrix f can be diagonalised i.e. it is 
sufficient to consider f in a diagonal form f = diag(A,, . . . , A N ) .  (2.22) can then be 
evaluated explicitly with the result (Itzykson and Zuber 1980) 

i n )  

M ( f * ,  f )  = (5' p ! )  det[exp(AiAF)] 
p = o  

(2.25) 

For the group SU(2), (2.25) reduces to 

M(f" , f )  = exp(AFAi)C1 -w( - I A ,  - A ~ I ~ ) I / I A ~  -h212. (2.26) 

An analogous expression can be similarly derived for the group SU(3) which for two 
eigenvalues equal ( A 2  = A 3 )  reduces to 

M ( f * ,  f) = 2  exp(A?Ai)[l - ~ A l - A z ~ 2 e x p ( - ~ A , - A ~ ~ 2 ) - e x p ( - ~ A ~ - A ~ ( 2 ) 1 / ( A , - A 2 ( 4 .  

Similar expressions can be derived for higher-dimensional unitary groups. 
(2.27) 

3. Quasi-coherent states for complex representations 

In the present section'we study the construction of quasi-coherent states for one-particle 
states which transform according to a complex representation, C(g) ,  of dimension d. 
Such a situation occurs when one is considering particles and anti-particles which 
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transform differently under group actions. In practical applications complex rep- 
resentations may for example be associated with fermions (see e.g. Skagerstam 1983, 
1984). 

In order to take the Dirac-Fermi statistics properly into account one can make use 
of a coherent state representation of fermionic operators (Klauder 1977, Ohnuki 1977) 
and a corresponding integration over Grassmannian variables (Berezin 1966). Here 
we will restrict ourselves to bosonic variables but, as will be clear from the presentation 
below, it is straightforward to extend our discussion to fermionic variables. 

When we consider a complex representation C ( g )  we must explicitly distinguish 
between particles and anti-particles. We introduce creation and annihilation operators 
for particles (anti-particles) aL,,(bL,m) and ak , , (bk , - )  where a = 1 , .  . . , d. Proceeding 
as in the construction of U( 1)-charged quasi-coherent states (Skagerstam 1979, 1980) 
we then consider the coherent state 

where U ,  ( U,) corresponds to the U-operator defined by the equation (2.1) for particles 
(anti-particles). A quasi-coherent state which transforms according to the representa- 
tion D2' is then defined by 

lP'db',f, h )  = exp[(f*,f) /2+(h*,  h)/2lCtt(f ,  h ) - " 2  I dgDk",t(g)lC(g)f, C(g)*h),  
G 

(3.2) 

where the normalisation constant Cb"'(f, h )  can be evaluated by making use of the 
procedure given in § 2 with the result Cb"'(f, h )  = Cb",'(h*,f*lf, h)/d{, , ' .  Here we have 
introduced the generating functional 

(3.3) 

In (3.3) the matrix F 1 2  has the matrix elements [F1& =fiefia and similarly for the 
matrix Hli. A completeness relationship can, furthermore, be derived for the quasi- 
coherent states (3.2) with the following result 

(3.4) 

Reduction of coherent states in terms of characters can also be carried out in complete 
analogy with the construction of the quasi-coherent states in terms of characters as 
discussed in § 2 (cf (2.18)). 

Expectation values of operators in the quasi-coherent state (3.2) can be obtained 
from the generating functional (3.3) in a fashion similar to the discussion of quasi- 
coherent states with real representations. For the number operator 

N = aL,oak,a + b;,,bk,a, 

(A h ;  D $ , } \ N I D $ ) ; ~ ~  h ) = a / a ~  ln[C&,'(h*,f*lAf, Ah)]lA=l.  

(3.5) 

the expectation value becomes 

(3.6) 

For the dispersion of the number operator, [ (AN)(nl ,o ,bJ ,h]2 ,  we obtain in analogy with 
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the equation (2.15) the following result 

[ ( b N ) ( n ) , ~ , b , l . h l ' =  [ a 2 / a A 2 +  a /aAI  ln[Cb"h'(h*,f*lAf, A h ) ] ,  (3.7) 

evaluated for A = 1 .  
I n  the case of the fundamental representation of the groups S U ( N )  and U ( N ) ,  

and for F = F12 = HI', the generating functional (3.3) has been studied in detail for 
the singlet representation in the literature either in the context of the external field 
problem in QCD (Brezin and Gross 1980) or in the context of one-link integrals in the 
lattice regularisation of QCD (Brower and Nauenberg 1981, Bars 1981, Brower et a l  
1981, Eriksson et a1 1981, Fateev and Onofri 1981 ). For the U(  N )  group the following 
expression has been derived (Brower et a l  1981) in terms of the eigenvalues x, of the 
matrix FFt for the singlet generating functional C(FFt) = C ( f * , f "  1f;f) 

2 (3.8) ( - ' " ' E ' p ! ) de  t [ A 1 - ' I ,  - I ( A, ) ]/ de  t [ ( A 5 ) ' - 'I, 
p - 0  

where A,  = 2Jxx,. For the groups SU(  N )  and U( N )  with N s 3 there exists explicit 
expressions for C ( F F A )  in terms of the invariants of the matrix FF' (Eriksson et a1 
1981). 

4. Field-theoretical considerations 

In order to be explicit, we consider free quantum fields which transform according to 
the fundamental or the adjoint representation. We furthermore restrict ourselves to 
the singlet representation quasi-coherent states. Remarkably enough, a rather rich 
structure is exhibited in these rather trivial examples as will be clear from the presenta- 
tion below. 

Let us first consider the fundamental representation. The free field Hamiltonian 
then reads 

where d k ( k )  
cal commutation relations have been normalised in such a way that 

d 3 k / 2 w ( k )  is the Lorentz-invariant phase-space measure. The canoni- 

[a, ( k ) ,  a; ( k ' ) ]  = 2w ( k )  S3( k - k ' )  a,,, (4.2) 

and  similarly for the anti-particles. w ( k )  is, of course, the energy of the one-particle 
state. The scalar product as defined by ( 2 . 2 )  is in terms of the invariant normalisation 

(4.3) 

and the Fock-space states are obtained by the successive actions of the operators ( a ' , f )  
and ( b ' ,  h )  on the vacuum state. Let us now consider the singlet quasi-coherent state 
ID:'= 1 ; f , f )  = If), and the expectation value of the free field Hamiltonian Ho defined 
above divided by the number of internal degrees of freedom ( N ' )  i.e. 

(Ho)  = s  (f 1 H ~ l f ) ~ /  N 2  = Eo/2N2[A  - 'a/dA In z, ( FF')]A ~ 1, (4.4) 
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where ZA(FFt) is the (one-link) integral 

Z, ( FFt) = d g  exp[A Tr( F t g  + Fgt)l. 5 ,  (4.5) 

Here we have for reasons of simplicity assumed that the one-particle overlap integral 
matrix F in (4.4) satisfies 

If the matrix F is diagonal, i.e. [Flap = ANS,,, then Z A ( F F t )  takes the following form 

and (4.3) should be evaluated for an arbitrary A. Eo is, for a diagonal F, the expectation 
value of Ho in the conventional coherent states I J f )  divided by the number of internal 
degrees of freedom ( N ’ ) .  Similarly A is related to the mean value of the number 
operator i.e. 2A = (AfflN(f,f)/N*. xF is the character of the fundamental representa- 
tion. We recognise in (4.7) the one-plaquette partition function for the two-dimensional 
lattice gauge theory with Wilson’s action and with the gauge group G (Gross and 
Witten 1980. See also Wadia 1979). In the large-N limit, Z(A)  has been computed 
exactly by means of steepest descent methods with the following results for ( H o )  

A CO.5 
A 2 0.5. 

( Ho) = { 
Eo(1 - $ A ) ,  

(4.8) 

The ‘free energy’, -In Z(A), and its first and second derivatives with respect to A are 
continuous at A = 0.5. Equation (4.8) exhibits a third-order phase transition since the 
third derivative of the free energy is discontinuous at A = 0.5. The existence of this 
third-order phase transition actually persists in the case of a general one-particle matrix 
[Flap (Brezin and Gross 1980). ( H o )  as a function of A is exhibited in figure 1. For 
finite A the singlet quasi-coherent state is less condensed as compared to a conventional 
coherent state I J f )  (cf the discussion by Mukunda et a1 1981). 

” 
0.2 

I 
I ! ! 1 1 I I 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 
x 

Figure 1. The large-N limit of the expectation value of the free field Hamiltonian, with 
fields transforming according to the fundamental representation, in a singlet quasi-coherent 
state. E, is defined in the text. A = 0.5 corresponds to a third-order phase transition. 
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The discussion above can easily be carried over to the adjoint representation in 
which case the free field Hamiltonian reads 

(4.9) 

The corresponding expectation value in a singlet quasi-coherent state then becomes 

(Ho)= Eo/N2[A-'a/dA In z,(FFt)],=, (4.10) 

where Z A ( F F t )  is now given by 

(4.1 1) 

and where we have assumed a relation similar to (4.6). If the matrix F is diagonal, 
i.e. [F lop  = A6,,, equation (4.10) should be evaluated for an arbitrary A. As can easily 
be verified, Eo is then the expectation value of Ho in the coherent state I f )  divided by 
the number of internal degrees of freedom ( N 2 )  and A = ( f lNI  f )/ N 2 .  2, ( FFt )  then 
becomes the one-plaquette partition function for two-dimensional lattice gauge theory 
with Wilson's action in the adjoint representation (Chen and Zheng 1982, Makeenko 
and Polikarpov 1982, Samuel 1982, Ogilvie and Horowitz 1983, Jurkiewicz and Zalewski 
1983a, b) i.e. 

Z(A ) = Z, ( FFt )  = dg exp( AxA), (4.12) 

where xA is the character of the adjoint representation. In the large-N limit, Z(A) 
can be computed exactly with the following result 

I, 

(4.13) 

In figure 2 we exhibit (H,,) as a function of A. In the large-N limit we therefore obtain 
a first-order phase transition for one-particle states transforming according to the 
adjoint representation. For A < 1 there are not sufficiently many states available to 
form a non-trivial singlet state and, hence, the only attainable state is the vacuum state. 

0.8 

0.6 
d 
2 0.4 
?5 

0.2 

0 1 2 3 4 5 6 7  
A 

Figure 2. The large-N limit of the expectation value of the free field Hamiltonian, where 
the fields transform according to the adjoint representation, in a singlet quasi-coherent 
state. E ,  is defined in the text. For A < 1,  the shaded area in the figure, the only attainable 
state is the zero-energy state due to the existence of a first-order phase transition at A = 1 .  
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One can trace the presence of the first-order phase transition back to the spontaneous 
breaking of the global symmetry under the action of the central elements of SU(N) .  
In the large-N limit the central elements, ZN, form a U(  1) sub-group which, for A 3 I ,  
is spontaneously broken. This breaking of the central U( 1) symmetry is similar to the 
breaking cf the U(  I)d-symmetry breaking in the quenched Eguchi-Kawai model 
(Eguchi and Kawai 1982, Bhanot er a1 1982). It is amazing to notice that the existence 
of a first-order phase transition for an ideal, colourless gluon gas in the large-N limit 
(Skagerstam 1983, 1984) has a formal counterpart in the first-order phase transition 
exhibited in (4.13). 

More generally we can, of course, consider a free field Hamiltonian with, for 
example, one set of fields transforming according to the fundamental representation 
and another set of fields which transforms according to the adjoint representation. 
The generating functionals (4.7) and (4.1 1 )  will then combine to yield the one-plaquette 
partition function for the two-dimensional lattice gauge theory with the mixed action 
(Chen and Zheng 1982, Makeenko and Polikarpov 1982, Samuel 1982, Ogilvie and 
Horowitz 1983, Jurkiewicz and Zalewski 1983a, b). Clearly, the analysis can be exten- 
ded to any representation. The large- N limit of the corresponding generating functional 
has been studied to some extent in the literature (Yee 1983). The general structure 
which emerges from such a study is a phase-diagram with, in general, first and 
higher-order phase transitions in the sense defined above. 

For interacting fields a perturbative scheme can, of course, be developed in terms 
of quasi-coherent states. We also mention the possibility of performing a variational 
calculation for interacting fields along the lines suggested by Ni and Wang (1983). 

5. Final remarks 

Coherent states have the property that they closely describe the classical dynamics of 
a given dynamical system under consideration (Klauder and Sudarshan 1968, Glauber 
1963, 1964). In the present paper we have considered quasi-coherent states appropriate 
for dynamical systems where an additional constraint on the dynamics is present, 
namely the existence of a conserved and, in general, non-Abelian charge. 

I t  has been pointed out by Klauder (1978, 1979, 1982, 1983) and Kuratsuji and 
Suzuki (1980a, b, 1981, 1983) (see also in this context Shankar 1980) that a path integral 
representation of the transition amplitude in terms of generalised coherent states may 
be useful in order to study the relationship between the quantum and classical aspects 
of a dynamical system with a 'curved phase space' as in the case of a spin system. In 
such a context it is natural to extend these considerations by making use of quasi- 
coherent states. Let H be a Hamiltonian which commutes with the generators of a 
Lie group G and let 11)) denote a corresponding quasi-coherent state with the following 
decomposition of the unity operator 

where we have suppressed all group-theoretical indices. A path integral representation 
of the transition amplitude 
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can then easily be written down 

where E = ( t2 - t l ) /  n. We now specifically consider a real representation, M(g) ,  and 
quasi-coherent states of the form (2.18) i.e. states which are diagonal in terms of the 
Casimir invariants. Other cases can be treated similarly. By making use of (2.19) and 
(2.20) we derive 

( f + ~ f ;  {n>I{n};f)  = expG[(Af*, g'"'f) - U*, g ' " ) ~ f ) I > [ l  +o((~f)')I (5.4) 

where we have defined a metric 

sh;('(f*,f) = M'"'(f*,f)- '  { dgx&)Mmp(g) exp[(f*, M ( g ) f ) l .  (5.5) 
G 

The transition amplitude TI, can then be written as follows 

Tlz'(f2; { n l ;  t z l t l ;  { m ) ; f J  

(5.6) 

The Lagrangian density 2 is defined by the Legendre transformation 

3 = ih/2[(f*, g'"'f) - tf*, g'"'f)I - Wf*,f) 

Wf*,f) = 8 ( { n ) ,  { m ) ) ( f ;  {n) lHl{m>;f ) .  

(5.8) 

and 

(5.9) 

The functional integration measure D [ f (  t ) ]  is derived by making use of the decomposi- 
tion of the unity operator (2.21) i.e. formally the measure has the form 

(5.10) D[f(t)l =n c d f ( l )  exp[-(f*(t),f(t))IM(")(f*(t),f(t)) d,",. ' '"1 

The presence of the metric gpd(f*,f) in the 'kinetic' part of 2' is related to the 
geometrical structure of the phase space in a fashion similar to the complex Kahler 
manifold derived by making use of the SU(2) generalised spin-coherent states (Klauder 
1978, 1979, 1982, 1983, Kuratsuji and Suzuki 1980a, b, 1981, 1983). The equations of 
motion derived from the action (5.7) in general take the following form 

ihG?d(f*,f)fg = -dX/df  (5.1 1 )  ihGh",'( f *, f )f$ = aX/af-, 
where 

Gh;l(f*,f) =a2 In M{"}(f*,f)/afeafp* (5.12) 
defines a metric on a Kahler manifold (Kobayashi and Nomizu 1969). 

Semi-classical aspects on the dynamical system defined by the Langrangian (5.8) 
have been discussed in the literature (Kuratsiju and Suzuki 1980a, b, 1981, 1983) and 
we will not dwell further on this question in the present paper. Here we only make 
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the following observations. If H describes the interaction of a Yang-Mills particle 
with an external gauge field (Balachandran et a1 1983), a path integral representation 
of T , 2  in terms of conventional coherent states yields an effective action of the form 
( 5 . 8 )  with g$.= rSap. The corresponding c-number Lagrangian has been studied in 
detail in the literature (Balachandran et a1 1977), where it was observed that the 
corresponding canonical quantisation in general leads to reducible representations of 
the group G. Allowing for only one irreducible representation to contribute in the 
derivation of (5.6) therefore corresponds to the non-trivial form of the metric Gk;) (or 
g f i ) .  The canonical quantisation of the dynamical system described by the Lagrangian 
( 5 . 8 )  must, of course, yield only one irreducible representation of the group G. 

As a final remark we notice that the probability, P ( A E ) ,  for the emission of soft 
non-Abelian massless vector bosons up to a certain total energy A E  from a classical 
c-number source, neglecting self-interactions among the vector bosons, can be com- 
puted along the lines of Skagerstam ( 1979, 1980). By making use of the asymptotic form 
of equation (2.25) it can then be verified that one obtains an infrared finite result for 
P( AE) with a structure similar to the corresponding expression in quantum electro- 
dynamics (cf Mukunda et a1 1981 and references cited therein). 
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